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We test the theory of Part I in the exchange limit by vibrating acrylic and aluminum spheres in a box con-
sisting of two flat, vertical isothermal walls, two bumpy, horizontal, insulated walls, and two flat vertical
insulated surfaces. The steady heat flux through the thermally-guarded hot wall is recorded at different
temperatures of the opposite wall cooled by thermoelectric modules, and enhancements of suspension
conductivity are calculated using a lumped-parameter model of the box. To compare results and theory,
we also predict vertical profiles of agitation and solid volume fraction in the box using granular dynamics.
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1. Introduction

The heat transfer to dense suspensions of agitated grains, in
which granular fluctuation velocity is not induced by fluid turbu-
lence, has elicited relatively few experiments [1,2], in contrast with
thermal conduction through static packings, which have received
greater attention [3]. In Part I, we outlined a theory for such heat
transfer by focusing on a generic fluid-particle system with uni-
form solid volume fraction m and ‘‘granular temperature” H, but
without an average relative velocity between fluid and solids [4].
(The granular temperature has units of fluctuation velocity squared
and measures granular agitation.) We considered grains of a single
diameter d, density qs, mass m = (p/6)qsd

3, specific heat cs and
material conductivity ks uniformly suspended in a fluid of density
qg, specific heat per mass cg, conductivity kg and viscosity l, con-
fined between two parallel flat isothermal walls at different tem-
peratures and separated by the distance L. We showed that
grains enhance the heat flux q transferred through these walls
above its value q0 in the clear fluid at rest according to

q
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¼ Kgt
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� � 1þ Ks
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ge).
is a thermal self-diffusivity of the agitated grains, g12(m) is the Car-
nahan–Starling pair distribution [5]; and Kn = ks/L is a Knudsen
number accounting for the relative size of the granular mean free
path ks ¼ d=½6

ffiffiffi
2
p

mg12� and L. In Eq. (1),

Kgt ¼ kgtfMðm; nstÞ ð3Þ

is the conductivity of the gas–solid mixture with nst � ks/kgt;

kgt

kg
¼ 1þx

9
ffiffiffiffi
p
p

Prt

qgcg

qscs

� �
fMðm; nsÞ � g12ð1þ 2KnÞ Ks

Kg

� �
ð4Þ

is the molecular conductivity of the gas augmented by particle-in-
duced velocity fluctuations, where Prt ’ 0.9 is a turbulent Prandtl
number and ns � ks/kg; and

Kg ¼ kgfMðm; nsÞ ð5Þ

is the mixture conductivity at rest evaluated at the bulk solid vol-
ume fraction m and ns. To evaluate mixture conductivities, we
adopted the function recommended by Meredith and Tobias [6],

fMðm; nÞ ¼ A1 � 2mþ A2 � 2:133A3

A1 þ mþ A2 � 0:906A3
; ð6Þ

where A1=(2 + n)/(1 � n), A2 = 0.409m7/3(6 + 3n)/(4 + 3n), A3 = 3m10/

3(1 � n)/(4 + 3n). In Eq. (1), the distance between hot and cold iso-
thermal walls is made dimensionless using

Ly ¼ L
d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12mNu
ðKgt=kgtÞ

f1f2 1þ Kgt

Ks

� �s
; ð7Þ

in which the particle Nusselt number Nu is based on kgt and grain
radius, and remains unity. The function
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Nomenclature

a0 vibration amplitude
am, bm, cm, dm constants in Eq. (8)
A, Ah individual heater surface areas
A1, A2, A3 functions in Eq. (6)
cg, cs fluid, solid specific heats per mass
d grain diameter
e, ew particle, wall restitution
E1, E2, E* stiffnesses
f vibration frequency
f2, f3, f4 granular dynamics functions of m
g gravitational acceleration
g12 binary sphere pair distribution
h particle heat transfer coefficient
hc1, hc2, he, hb wall heat transfer coefficients
H volumetric rate of heat exchange
I integral of solid volume fraction
kg, ks fluid, solid thermal conductivities
keff effective thermal conductivity
kt, kgt turbulent, total fluid conductivities
Kg, Ks mixture, solid-phase conductivities
Kgt augmented mixture conductivity
L thermal wall-to-wall distance
L0 reference width in Eq. (8)
L� relative length scale in Eq. (7)
m grain mass
M constant in j
N number of realizations
Ps granular pressure
q0, q clear gas, suspension wall fluxes
q+, q� heat fluxes at hot, cold walls
_Q s steady heat rate supplied
Rb box thermal resistance
Sb box external area
t time
Tg, Ts fluid, solid thermal temperatures
T1, ambient temperature
T+, T� temperatures of hot and cold walls
vi grain fluctuation velocity along i
x, y, z cartesian coordinates
X, Z wall-to-wall distances
zc filling height at mc

Greek symbols
b0, b0w particle, wall tangential restitutions
c granular energy collisional dissipation rate

H granular temperature
i variable of integration
j conductivity of granular fluctuation energy
ks grain mean free path
ls, lw particle, wall friction coefficients
l fluid viscosity
m solid volume fraction
mf, mc freezing, randomly jammed values of m
ns ks/kg

nst ks/kgt

n1 first root of n/tann = 1 � Bi
N collision number wall flux
qg, qs fluid, solid material densities
r1, r2 Poisson’s ratios
W flux of granular fluctuation energy
x constant in Eq. (4)
X slope in Eq. (42)

Dimensionless groups
Bi Biot number
Da Damköhler second ratio
Foc time-of-flight Fourier number
Kn Knudsen number
Nu particle Nusselt number
Pr Prandtl number
Prt turbulent Prandtl number
Ra Rayleigh number
Re particle Reynolds number
C dimensionless acceleration
K dimensionless vibration self-diffusivity (Eq. (31))
� vibration Froude number

Scripts
�, *, dimensionless
– average along z
g, s gas, solid
air, He air, helium
th, nx, ex theory, numerical simulation, experiment
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f1ðm; L=dÞ ¼ 1þ mð1� e�L=L0 Þðbm þ ammÞ
1þ mð1� e�L=L0 Þðdm þ cmmÞ

; ð8Þ

in which the parameters L0/d � 12.8, am � 1385, bm � 230, cm �
4370, and dm � 327 arise from our integration of HAB theory [7],
captures effects of spatial ordering imposed by the thermal walls
on Kg and the volumetric rate of heat exchange eH between solids
and fluid. The function

f2ðBi; FocÞ � expð�f2
1FocÞ � 1� Bi

5
þ 3

520
Bi2 þ 99

13000
Bi3

� �
ð9Þ

captures the dependence of eH on the grain Biot number

Bi ¼ Nu=nst ð10Þ
to a good approximation for Bi < 1.3, where the eigenvalue f1 �ffiffiffiffiffiffiffi

3Bi
p

½1� Bi=10þ Bi2
=156� and the Fourier number based on mean

granular time-of-flight is related to Ks/Kg using

Foc ¼
ns

54mg2
12ð1þ 2KnÞðKs

Kg
ÞfMðm; nsÞ

: ð11Þ
The Lattice–Boltzmann numerical simulations of Verberg and Koch
indicate that, in dense suspensions of spheres, the gas Reynolds
stress is proportional to strain rate and qgH

1/2d [8]. Equivalently,
we suggested in Part I that the parameter x in Eq. (4) is a function
of m that must vanish at m = 0 [4]. We then adopted Verberg and
Koch’s measurement of x = 0.037 at m = 0.3 and, in the absence of
published measurements at other volume fractions, assumed
x = (0.037/0.3)m.

In short, to capture effects of particle-induced gas velocity fluc-
tuations on heat transfer, our approach is to raise the gas conduc-
tivity from its molecular value kg to kgt, to calculate kgt from the
measurements of Verberg and Koch [8] in numerical simulations
of dense gas–solid suspensions, and to account for the resulting
conductivity augmentation in the mixture conductivity, the parti-
cle Biot number, and the gas–solid heat exchange rate. We adopt
this approach rather than invoking an empirical correlation [9] that
raises the Nusselt number of an individual sphere with a particle
Reynolds number based on fluctuation velocity,
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Re ¼ 9
ffiffiffiffiffiffi
3p
p

g12
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Ks

Kg
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ð1þ 2KnÞ; ð12Þ

where Pr = lcg/kg is the Prandtl number of the gas.
An important assumption of our thermal theory is that

grains do not exchange any appreciable heat during their ephem-
eral collisions among themselves or with the wall. This is the case
if

q1=5
s E�4=5dcs

H3=10ks
� 1; ð13Þ

where E��1 ¼ ½ð1� r2
1Þ=E1 þ ð1� r2

2Þ=E2� combines the Young’s
moduli Ei and Poisson’s ratios ri of the two impact protagonists.
This assumption implies that, although grains can transport heat
through self-diffusion (Eq. (2)), they must first exchange this heat
with the fluid, before it can be transferred by the fluid to the wall.
These two serial processes resemble the competition between diffu-
sion and chemical kinetics in diffusion flames, and are similarly
arbitrated by a Damköhler second ratio

Da ¼ ðKg=KsÞðLy=2Þ
tanhðLy=2Þ

; ð14Þ

which delineates two asymptotic situations. At high Da, self-diffu-
sion dominates q/q0 in a regime that we call the ‘‘diffusion limit”,
for which the thermal temperatures of fluid and solid are identical,
and thus assumption (13) is not as crucial. At low Da, self-diffusion
no longer matters directly, but instead q/q0 is governed by the abil-
ity of individual spheres to exchange heat with the fluid through the
difference between their thermal temperature and that of the fluid.
In this ‘‘exchange limit”, granular agitation can still play a role, as
mentioned earlier, by raising the mixture conductivity from Kg to
Kgt, the particle Biot number, and the gas–solid exchange rate
through kgt. These effects are captured to a good approximation
by Eqs. (1)–(11), without having to integrate the governing thermal
equations numerically.

In Part II, we test this theory with an experiment consisting of
an insulated vibrated box containing agitated spheres in air be-
tween two isothermal flat walls, one cooled and the other heated.
The thermal heat flux is inferred from the electrical energy sup-
plied to the heated wall at steady-state. We begin Part II with a
description of the experiment. Further details are provided in
Chen’s doctoral thesis [10]. To compare experimental data and the-
ory, we derive a model for solids agitation in the box, which gravity
renders inhomogeneous in the vertical direction.
ceramic board

heatercooler

heat sink

2

1

3

yz

Fig. 1. Sketch of a cross-section of the vibrated box in the (y,z) plane. Dimensions
are not to scale. Large arrows labeled 1, 2 and 3 mark heat energy paths
corresponding to the three terms in Eq. (41).
2. Apparatus

To produce a dense, relatively uniform suspension of agitated
particles in the laboratory without an average relative velocity
between gas and solids, a simple way is to shake spheres in a
rectangular box. Such shaking must be sufficient to agitate the
spheres without creating excessive granular condensation at the
base of the box. Following a brief description of the apparatus in
Section 2.1, we outline a simple analysis of granular shaking in
Section 2.2.

In evaluating the heat flux q, the principal challenge is to
account for thermal flows that do not traverse the suspension.
Our strategy is to minimize conduction through, and convection
away from, the box walls. However, because such parasitic heat
flows cannot be eliminated, we employ a measurement strategy
that keeps them nearly constant, maintains a nearly two-dimen-
sional temperature field where measurements are performed,
and extracts q from a simple lumped-parameter model of the
box and its contents. We summarize this heating strategy in
Section 2.3.
2.1. Description

Fig. 1 is a conceptual sketch of the apparatus. A sinusoidal vibra-
tion of amplitude a0 and frequency f = 50 Hz is produced in the up-
ward vertical direction z by a VTS-100 shake table driven by a
function generator and capable of delivering a 450 N peak force.
We calibrate and verify the table displacement time-history using
a capacitance probe system of precision better than 10 lm and
bandwidth 0–4 kHz. Each experiment is run at the five amplitudes
a0 = 0.72, 0.96, 1.27, 1.69, and 1.96 mm.

The thermal heat flux traverses the suspension from the heating
(right) to the cooling (left) surfaces separated by a distance
L = 25 mm along y. The depth along x is bounded by two flat, ver-
tical insulated walls a distance X = 76 mm apart made of RESCOR
360HS ceramic board with a relatively low conductivity of
0.07 W/m K and thickness of 15–30 mm. Spheres are agitated by
colliding among themselves and with bumps on the top and bot-
tom walls consisting of rectangular brass bars of 4 mm width span-
ning the entire depth. The bars are thin and hollow to minimize
fatigue of the ceramic in which they are imbedded, while increas-
ing its stiffness. They are separated by ceramic-filled gaps of 2 mm
to reduce wall conduction along y. The vertical distance between
opposite bars is Z = 25 mm. The box is held together by threaded
metal braces outside the ceramic walls. External dimensions are
105 � 60 � 85 mm3 along x, y and z.

We conduct experiments with acrylic spheres of 2, 3.2 and
4 mm diameter, and with aluminum spheres of 3.2 mm diameter.
The latter have a very low Biot number (	1.5 � 10�4 at kt = 0)
and a large ks that has the potential to generate high mixture con-
ductivities. The former have a higher Bi 	 0.2 at kt = 0, so that the
correction in Eq. (9) can differ significantly from unity as kt grows.
In separate experiments, we employ the technique of Foerster et al.
[11,12] to measure impact parameters. For binary collisions, these
include the coefficients of normal kinematic restitution e, friction
ls and tangential restitution b0. For impacts of those spheres with
metal bumps, the respective parameters are ew, lw and b0w. They
are listed in Table 1. A disadvantage of aluminum spheres is that
they dissipate much energy in collisions and, as we will later dis-
cuss, their suspensions are more likely to collapse in the vibrated
box. Properties of gases used are shown in Table 2.

Fig. 2 is a sketch of the assembly. Heat is generated by three
square Watlow thick-film electrical heaters with negligible capac-



Table 1
Grain impact parameters and properties

Material e ls b0 ew lw b0w qs (kg/m3) cs (J/kg K) ks (W/m K)

Acrylic 0.93 0.12 0.35 0.965 0.22 0.28 1180 1400 0.14
Aluminum 0.45 0.1 0.3 0.5 0.1 0.3 2700 900 180

Table 2
Gas properties at 320 K

Gas qg (kg/m3) cg (J/kg K) kg (W/m K) l (kg/m s)

Air 1.12 1010 0.028 1.9 � 10�5

Helium 0.157 5200 0.159 2.1 � 10�5
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itance or inductance. To minimize temperature variations on the
heating surface exposed to the suspension, each heater is covered
over its entire surface of area A = 25.4 � 25.4 mm2 by a square cop-
per plate bonded using highly conductive thermal paste. A copper-
constantan thermocouple is inserted beneath each plate. The ther-
mal flux is inferred from the power supplied to the central heater
using the lumped-parameter model discussed in Section 2.3. A
Watlow ‘‘Series 96 1/16 DIN” controller maintains the thermocou-
ple temperature at T+ = 333 K ± 0.1 K by supplying short [200 ms
bursts of 60 Hz AC voltage to the heater. A National Instrument
DAQ-1200 card mounted in a laptop computer acquires power
consumption data at a sampling rate of 4 kHz using the LabView
software. The laptop is operated on batteries to minimize electrical
supply noise.

The two side heaters act as a ‘‘guard” making the thermal prob-
lem nearly two-dimensional. To that end, they are jointly set to the
operating temperature of the central heater with a separate Wat-
low controller. Because the three adjacent heaters are separated
by a thin layer of RESCOR 360HS ceramic, and because great care
is taken to equate their temperatures, we calculate that conduction
from the central heater along the x-direction is <1% of the heat flux
jqj traversing the box.

The heat flux is absorbed by three Melcor CP0.8-127-06L ther-
moelectric coolers of 24.6 � 24.6 mm2 inserted between a single
copper plate exposed to the suspension and external aluminum
Building Block
(Ceramic board)

Film Heater

Building Blo
(Ceramic b

Thermocouples

Fig. 2. Assembly sketch of the vibrated box without th
fins air-cooled by forced convection. A Melcor MTCA-9060 control-
ler maintains the plate temperature at four possible steady values
T� = 293, 303, 313 or 323 K monitored by three YSI series 44,008
thermistors inserted beneath the plate. For these operating tem-
peratures and at the effective emissivity of the suspension and
the polished copper plates, the radiation flux emitted by the cen-
tral heater or received by the coolers is <1% jqj.

The thermal response time of the system is relatively high, thus
making readings stable, but compelling us to wait before a steady-
state is achieved. At worst, when heater and cooler are suddenly
turned off, the box at rest returns to the ambient temperature on
a 1/e time of approximately 13 min.

2.2. Shaking

A challenge of our experiments is that gravity and energy dissi-
pated in collisions create vertical inhomogeneities in granular agi-
tation and solid volume fraction, thus complicating the
interpretation of thermal data with a theory meant for uniform
H and m. Gravity draws grains to the bottom unless agitation is
high enough to minimize the resulting imbalance in solid volume
fraction. In the worst case, an insufficient vibration energy input
can collapse the suspension. In this section, we describe a simple
one-dimensional granular dynamics model capturing these effects,
and we briefly outline discrete-element-modeling (DEM) numeri-
cal simulations to infer the granular temperature in experiments.
Other simulations and more detailed analyses may be found, for
example, in Refs. [13–16].

To compare measurements of q/q0 with predictions of the
theory, we first evaluate the self-diffusive conductivity Ks of the
solid-phase using Eq. (2). To that end, we compute the
average dimensionless granular temperature H� � H=ða02pf Þ2 in
Thermal Electronic (Peltier) Cooler

Metal Bump
ck

oard)

Heat Sink

Copper Plates

Thermistors

e ceramic retaining side walls perpendicular to x.
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numerical simulations employing the DEM hard-sphere algorithm
described by Hopkins and Louge [17]. The algorithm detects colli-
sions once spheres have overlapped slightly and, for the sake of
computing speed, periodically optimizes the time step between
consecutive realizations to achieve a small average tolerated
overlap. It calculates post-impact velocities based on the normal
restitution, friction and tangential restitution parameters recorded
in independent collision experiments [11,12].

We assume that the N grains in the box have no mean velocity,
and compute their mean temperature over several realizations

H ¼ 1
N

XN

i¼1

v2
x þ v2

y þ v2
z

3

 !
; ð15Þ

where vx, vy and vz are grain velocities in the three cartesian direc-
tions. The rectangular simulation domain is bounded with flat walls
separated by the same relative distances Y/d and Z/d as in the exper-
iments. For simplicity, the domain has periodic boundaries along x
separated by L. The virtual box is vibrated along z at the dimension-
less acceleration C�(2pf)2a0/g, and contains spheres with impact
parameters in Table 1. Because collision velocities on the order of
0:02 <

ffiffiffiffiffi
H
p

< 1:1 m=s are within the range where we observe con-
stant impact parameters [11,12], we expect

ffiffiffiffiffi
H
p

to scale with
(2pfa0), unlike the more complicated scaling that Falcon, et al have
reported [18].

To model the granular system, we consider frictionless spheres
colliding between two horizontal planes vibrating in unison as
z0 = a0sin(2pft). Quantities only vary along z. The mean volume
fraction in the domain is

�m ¼ 1
Z

Z Z

0
mdz; ð16Þ

where the overbar denotes spatial averaging along z. The granular
pressure is

Ps ¼ f4ðmÞqsH: ð17Þ

In the presence of the gravitational acceleration g, a vertical hydro-
static gradient develops. Neglecting contributions from the gas,

dPs

dz
¼ �qsmg: ð18Þ

Without stress work or convection, the balance of fluctuation en-
ergy for nearly elastic, frictionless spheres is

0 ¼ �dw
dz
� c; ð19Þ

where

w ¼ �j
dH
dz

ð20Þ

is the flux of granular fluctuation energy across horizontal planes,
with conductivity j ¼ f2ðmÞqsd

ffiffiffiffiffi
H
p

. In Eq. (19), c = f3(m)(1 � e2)
qsH

3/2/d is the volumetric rate of collisional dissipation. (In this
equation, we neglect the role of the gas in dissipating H [19,20].)
For nearly elastic, frictionless spheres, Jenkins and Richman [21]
provided expressions for the functions f2ðmÞ ¼ ð4=

ffiffiffiffi
p
p
ÞMm2g12 with

M � 1 + (9p/32)[1 + 5/(12mg12)]2, f3ðmÞ ¼ ð12=
ffiffiffiffi
p
p
Þm2g12, and

f4(m)=m(1 + 4mg12).
We make the governing equations dimensionless by defining

z
0 � z/Z, P0s � Ps=ðqsgdÞ, H0 �H/(gd), and w0 � w(Z/d)/[qs(gd)3/2].

We write the result as a system of four coupled non-linear
ODEs,

dP0s
dz0
¼ �m

Z
d
; ð21Þ

dH0

dz0
¼ � w0

f2H
01=2 ; ð22Þ
dw0

dz0
¼ �f3ð1� e2Þ Z

d

� �2

H03=2; ð23Þ

and

dI
dz0
¼ m: ð24Þ

We use the integral I �
R z0

i¼0 mðiÞdi, where i is a variable of integra-
tion representing z0, to enforce the average solid volume fraction
in the box. At each step of integration, the program determines m
from P0s and H0 by inverting numerically the function f4ðmÞ ¼
P0s=H

0 from Eq. (17) with a fast interpolation look-up table.
We prescribe boundary conditions at the horizontal vibrated

walls, which supply a flux of fluctuation energy to the suspension.
Richman [22] derived a theoretical expression for w through a ran-
domly vibrated bumpy boundary. Because the geometry and oper-
ation of our box are different, we take a heuristic approach based
on a simpler scaling for w that produces reasonable agreement
with numerical simulations. Specifically, we assume that grains ac-
quire a fluctuation velocity proportional to the product of the nor-
mal restitution coefficient ew and the velocity amplitude of the
wall, and write the corresponding flux

w 	 mð2pfa0ewÞ2N; ð25Þ

where the number of collisions per unit area of the wall and unit
time is [23]

N ¼ 3
ffiffiffi
2
p

p3=2

 !
H1=2

d3

 !
mð1þ 2mÞ
ð1� mÞ2

" #
: ð26Þ

Chen derived a more rigorous expression for w involving all wall
impact parameters [10]. However, his more detailed analysis, which
produced different expressions of w for the inward and outward
strokes of the vibrated wall, only captured qualitative trends for
variations of w with m and impact parameters.

If grains collide with both top and bottom walls, we write the
corresponding dimensionless boundary fluxes as

w0ðz0 ¼ 0;1Þ ¼ 

ffiffiffiffiffiffi
1

2p

r
Z
d

� �
�

mð1þ 2mÞ
ð1� mÞ2

" #
H01=2; ð27Þ

where the plus and minus signs correspond to z0 = 0 and z0 = 1,
respectively, and indicate that both boundaries supply fluctuation
energy to the suspension. In this system, there are four dimension-
less parameters, namely Z/d, �m, e and � � (2pfa0ew)2/gd. � is related
to the relative vibrational acceleration C, which is invoked more of-
ten in studies of vibrated grains. We integrate Eqs. (21)–(24)
numerically with MATLAB’s bvp4c code, subject to the two boundary
conditions (27), and to I = 0 at z0 = 0 and I = 1 at z0 = 1.

If � or e are too small, or if Z/d is too large, as in experiments
with 2 mm acrylic or 3.2 mm aluminum spheres, the suspension
may not reach the top of the box. In such ‘‘collapsed” situation,
we no longer prescribe w at z0 = 1, but instead write that the sus-
pension weight is entirely borne by the bottom wall,

P0sðz0 ¼ 0Þ ¼ �m
Z
d
: ð28Þ

For such experiments, the expression of Carnahan and Starling [5]
for the pair distribution function

g12 ¼
ð2� mÞ

2ð1� mÞ3
ð29Þ

is no longer valid if the local m exceeds the ‘‘freezing” value
mf � 0.49; in that event, we invoke Torquato’s extension for m > mf,

g12 ¼
ð2� mfÞ

2ð1� mf Þ3
� ðmc � mfÞ
ðmc � mÞ ; ð30Þ



Table 3
Experimental data for 4 mm acrylic spheres

L/d �m C H�th H�ns Ks/Kg ð�q=q0Þth ð�q=q0Þex

6.4 0.065 7.2 2.1 2.9 2900 3.3 4.3
9.7 2.1 1.9 3200 3.6 4

13 2.1 1.7 4000 4 4.2
17 2.1 2.4 6300 4.6 5.6
20 2.1 3.8 9100 4.9 6

6.4 0.13 7.2 1.1 1.3 1800 4.9 4
9.7 1.1 1.5 2600 5.4 3.5

13 1.1 1.3 3100 6.2 3.9
17 1.1 1.1 3900 7.2 4.5
20 1.1 1.3 4800 7.8 5.6

6.4 0.195 7.2 0.68 0.91 1200 6.3 5.7
9.7 0.71 0.83 1500 7.1 5.8

13 0.73 0.84 2100 8.2 5.6
17 0.74 0.88 2800 9.5 6.3
20 0.74 0.79 3100 10 8

6.4 0.26 7.2 0.49 0.67 790 7.6 8
9.7 0.53 0.53 930 8.7 6.9

13 0.55 0.65 1400 10 7.7
17 0.56 0.63 1800 12 8.6
20 0.56 0.71 2200 13 10.2

6.4 0.325 7.2 0.39 0.5 500 8.9 5.5
9.7 0.43 0.48 650 10 7.3

13 0.45 0.47 840 12 10.2
17 0.45 0.58 1300 14 11.3
20 0.45 0.68 1600 15 12.2

6.4 0.39 7.2 0.33 0.46 330 10 5.9
9.7 0.37 0.4 410 12 8.1

13 0.38 0.41 550 14 9.3
17 0.38 0.54 850 16 13.1
20 0.38 0.56 1000 17 13.1

The subscripts ‘‘th”, ‘‘ns”, and ‘‘ex” refer to theory, numerical simulations and
experimental data, respectively. Values of (q/q0)ex in boldface represent conditions
for which cL/2 > 0.1jqj. H�th and H�ns are average granular temperatures made
dimensionless with (2pfa0)2 and calculated, respectively, from the model using Eq.
(33), and from simulations using Eq. (15). Ks/Kg is calculated from Eqs. (2) and (5)
using �m and H�ns from numerical simulations. ð�q=q0Þth is the average flux ratio cal-
culated with the theory of Eq. (1) and averaged in the vertical direction with Eq.
(32); ð�q=q0Þex is experimental data calculated with Eq. (43).
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where mc � 0.64 is the volume fraction of the random jammed state
[24].

Once profiles m(z0) and H0(z0) are established, we use Eq. (2) to
find vertical variations of

Ks

Kg
¼ KH01=2

ð1þ 2KnÞð9
ffiffiffiffi
p
p
Þg12fMðm; ks=kgÞ

; ð31Þ

and we substitute the results in Eqs. (1) and (3)–(11) to evaluate
how Bi, Foc, Kn, kgt, nst, Kgt, L� and, ultimately, q/q0 vary along z0.
Thus, a new dimensionless number K � qscsd

ffiffiffiffiffiffi
gd

p
=kg appears when

gravity is present. Because the suspension behaves as a medium
with conductivity varying in the direction perpendicular to the tem-
perature gradient, the total flux is obtained by summing the contri-
butions of elementary slices of dimensionless height dz0,

�q
q0
¼
Z 1

z0¼0

qðz0Þ
q0

dz0: ð32Þ

For consistency with Eq. (15), we evaluate H as a weighted average
involving the local solid volume fraction,

H ¼
Z Z

0
Hmdz=

Z Z

0
mdz: ð33Þ

Fig. 3 contrasts vertical profiles for a situation in which grains are
well agitated through the height of the box, to another in which
the suspension has begun to collapse to the bottom. In the first (so-
lid lines), the flux ratio q/q0 is nearly uniform. In the second (dashed
lines), the collapse creates a mildly agitated region of high solid vol-
ume fraction near the base, where the sharp rise in q/q0 is a result of
much higher local values of Kg/kg. In the extreme case when H ? 0,
the entire granular medium fills the bottom of the box to a height
zc ¼ Z�m=mc with mixture conductivity Kg/kg = fM(mc;ns), and Eq. (32)
tends to

�q
q0
! zc

Z

� �
fMðmc; nsÞ þ 1� zc

Z

� �
: ð34Þ

Because experiments with the collapsed system are dominated by
Kg/kg, they are not as instructive for studying the thermal behavior
of agitated grains. In that case, Vargas and McCarthy [3], for exam-
ple, offer a better account of the relevant heat transfer, which cru-
cially depends on static stresses applied to the granular assembly
that are not considered here.

As Tables 3–6 indicate, although the numerical simulations
have more realistic geometry and impact parameters than the
0 0.2 0.4 0.6

ν

0

1

z/
Z

0.001 0.01

Θ/(2

g

Fig. 3. Vertical profiles of solid volume fraction m, dimensionless granular temperature
f = 50 Hz (C = 17) for acrylic (solid lines, � = 8.4) and aluminum (dashed lines, � = 2.2)
properties to calculate q/q0 from Eqs. (1)–(11) are shown in Tables 1 and 2. The arrow p
model, the mean granular temperatures measured in simulations
using Eq. (15) agree well with model predictions of Eq. (33), except
0.1 1

πf a0)2
0 20 40

q/q0

H/(2pfa0)2 and flux ratio q/q0 at a vibration amplitude a0 = 1.69 mm and frequency
spheres of 3.2 mm diameter (L/d = Z/d = 7.9) at �m ¼ 0:325. Relevant gas and solid
oints toward the direction of gravity.



Table 4
Experimental data for 3.2 mm acrylic spheres

L/d �m C H�th H�ns Ks/Kg ð�q=q0Þth ð�q=q0Þex

7.9 0.065 7.2 1.7 1.8 2000 3.6 3.5
9.7 1.7 2.1 2800 3.9 4

13 1.7 1.7 3300 4.3 3.5
17 1.7 1.7 4500 4.7 4.6
20 1.7 1.6 5010 5.1 4.9

7.9 0.13 7.2 0.8 0.83 1200 5.3 5.3
9.7 0.82 0.92 1700 5.8 5.2

13 0.84 0.91 2200 6.5 5.3
17 0.84 0.8 2800 7.4 5.9
20 0.85 0.81 3200 7.9 7

7.9 0.195 7.2 0.5 0.64 830 6.8 7.3
9.7 0.52 0.69 1200 7.6 7.2

13 0.55 0.48 1300 8.5 6.5
17 0.56 0.55 1800 9.8 8.1
20 0.56 0.54 2100 11 9.2

7.9 0.26 7.2 0.35 0.49 550 8.2 7.3
9.7 0.38 0.44 690 9.2 7.8

13 0.41 0.41 890 10 8.7
17 0.42 0.42 1200 12 11.7
20 0.42 0.36 1300 13 13.3

7.9 0.325 7.2 0.27 0.32 320 9.5 6.7
9.7 0.3 0.33 430 11 7.3

13 0.33 0.33 570 12 7.6
17 0.34 0.34 770 14 11.5
20 0.34 0.33 880 15 15.5

7.9 0.39 7.2 0.21 0.26 200 11 6.3
9.7 0.26 0.26 270 12 7.6

13 0.28 0.28 370 14 8.3
17 0.28 0.29 500 16 11.7
20 0.28 0.3 580 17 18

Symbols, see Table 3.

Table 5
Experimental data for 2 mm acrylic spheres. Symbols, see Table 3

L/d �m C H�th H�ns Ks/Kg ð�q=q0Þth ð�q=q0Þex

12.7 0.065 7.2 1 1.1 1100 4.7 5
9.7 1 1 1400 5.1 5

13 1 1.1 1900 5.4 4.9
17 1 1 2500 5.8 5.4
20 1 1 2800 6.1 6.7

12.7 0.13 7.2 0.43 0.4 550 6.6 6
9.7 0.41 0.47 790 7.2 7.5

13 0.44 0.45 1000 7.9 7.5
17 0.46 0.44 1300 8.7 8.2
20 0.47 0.41 1500 9.1 9.4

12.7 0.195 7.2 0.27 0.19 290 8.3 4.7
9.7 0.24 0.19 390 9 8.1

13 0.24 0.19 520 9.9 10.4
17 0.29 0.2 700 11 11.7
20 0.29 0.23 870 12 13.9

12.7 0.26 7.2 0.18 0.14 180 9.7 6.3
9.7 0.17 0.13 240 11 11.7

13 0.16 0.13 310 11 13.2
17 0.21 0.13 420 13 15.1
20 0.22 0.13 490 14 16.8

12.7 0.325 7.2 0.135 0.092 110 11 5.6
9.7 0.13 0.1 150 12 11.2

13 0.119 0.091 190 13 15.4
17 0.17 0.1 270 15 17.9
20 0.17 0.1 300 16 19.3

12.7 0.39 7.2 0.104 0.081 70 11 5.6
9.7 0.1 0.075 91 13 12.1

13 0.095 0.07 120 15 17.3
17 0.143 0.069 150 17 19.2
20 0.145 0.064 170 18 22.9

X. Chen, M. Louge / International Journal of Heat and Mass Transfer 51 (2008) 5119–5129 5125
in certain collapsed situations. The model is particularly useful at
relatively small values of Z/d, for which vertical profiles are pro-
nounced. In that case, Fig. 4 compares model and simulations for
H� � H=ð2pfa0Þ

2 versus � for 2 mm acrylic spheres at two values
of �m. At �m ¼ 0:065, the suspension is agitated through the range
of z/Z. At �m ¼ 0:39, it collapses partially and achieves a much lower
H�. Curiously, for �m ¼ 0:39, the model predicts two overlapping
solutions in the range 7 [ � [ 10. However, simulations suggests
that the more energetic state is not stable.

A simpler calculation allows us to predict the level of granular
temperature achieved in nearly homogeneous suspensions, with-
out invoking the numerical model. Assuming that H ’ H and
m ’ �m are uniform in the box, a balance of fluctuation energy sup-
plied through the two boundaries of area (XL) and consumed in
the volume (XLZ) yields 2w 	 cZ, or

H� ’ 1
3
ffiffiffi
2
p e2

w

ð1� e2Þ
ð1þ 2�mÞð1� �mÞ
ð2� �mÞ�m

1
ðZ=dÞ : ð35Þ

For experiments with 3.2 and 4 mm acrylic spheres, for which the
model predicts nearly uniform m and H, Eq. (35) agrees with simu-
lations to better than 28%. Ideally, experiments should be carried
out in this nearly homogeneous regime. The best way to do so is
to conduct them in microgravity, so issues arising from suspension
collapse are avoided.

2.3. Heating strategy

The guard heater described in Section 2.1 minimizes conduction
losses in the depth x of the cell, thus making heat transfer nearly
two-dimensional in the plane (y,z). However, this technique does
not eliminate heat conduction through the walls. Because the por-
ous ceramic box material has a conductivity just above that of air,
it transfers heat at a rate comparable to the suspension’s. Manag-
ing wall conduction is the principal challenge of heat transfer mea-
surements with gas–solid mixtures. Our strategy is to keep such
conduction as constant as possible by fixing the heater tempera-
ture T+, and to infer the suspension conductivity from tests at four
different cooler temperatures T�.

Another challenge is that the fluctuation energy dissipated in
grain collisions can produce significant heat. To account for this,
we add the volumetric rate of collisional dissipation to the thermal
balance of the particle phase,

0 ¼ � d
dy

�Ks
dTs

dy

� �
� H þ c; ð36Þ

which we solve simultaneously with its counterpart for the gas
phase

0 ¼ � d
dy

�Kg
dTg

dy

� �
þ H; ð37Þ

subject to the boundary conditions Tg = T± and dTs/dy = 0 at y = ±L/2.
In these equations, Tg and Ts are the thermal temperature of the gas
and solids, respectively, and H is the average volumetric rate of
thermal energy that particles supply to the gas. If c 6¼ 0, a one-
dimensional balance of thermal energy reveals that the heat flux
q� < 0 crossing the cold plate differs from its counterpart q+ < 0
through the hot wall according to

qþ � q� ¼ cL: ð38Þ

Because Eqs. (36) and (37) are linear in c, Tg and Ts, and because
q+ = q� = q when c = 0, one can show that (q+ + q�)/2 = q, where



Table 6
Experimental data for 3.2 mm aluminum

L/d �m C H�th H�ns Ks/Kg ð�q=q0Þth ð�q=q0Þex

7.9 0.065 7.2 0.1 0.4 1300 3 3.4
9.7 0.08 0.25 1300 3.1 4.1

13 0.07 0.24 1700 3.2 5.5
17 0.07 0.29 2500 3.3 5.1
20 0.06 0.37 3300 3.4 7.3

7.9 0.13 7.2 0.035 0.064 420 5.6 8.6
9.7 0.037 0.05 500 5.5 9.1

13 0.033 0.051 660 5.4 9
17 0.03 0.078 1100 5.5 9.5
20 0.029 0.075 1200 5.5 9.7

7.9 0.195 7.2 0.006 0.026 200 14 10.3
9.7 0.016 0.024 250 8.8 12

13 0.019 0.018 290 8.3 8.2
17 0.018 0.012 310 8.2 9.5
20 0.017 0.017 440 8.1 11.5

7.9 0.26 7.2 0.001 0.013 100 49 7.7
9.7 0.005 0.01 110 18 9.9

13 0.01 0.022 220 12 14.1
17 0.012 0.011 210 12 14.3
20 0.0115 0.0082 210 11 15.6

7.9 0.325 7.2 0.0004 0.008 50 65 7.5
9.7 0.0003 0.0079 67 64 8

13 0.02 0.0099 100 22 14.5
17 0.0292 0.0079 120 17 16.2
20 0.0302 0.0078 130 16 16.9

7.9 0.39 7.2 0.0003 0.0076 31 80 7.7
9.7 0.0001 0.0063 37 80 9.7

13 0.0024 0.0058 47 44 17.9
17 0.0054 0.0046 56 27 18.5
20 0.006 0.0092 92 24 21

Values of ð�q=q0Þth in italics denote a suspension predicted to be near complete
collapse, and for which ð�q=q0Þth tends to the value in Eq. (34).
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Fig. 4. Mean dimensionless granular temperature H� � H=ð2pfa0Þ
2 in the box

versus � � (2pfa0ew)2/gd for 2 mm acrylic spheres (L/d = Z/d = 12.7) at �m ¼ 0:065
(top) and �m ¼ 0:39 (bottom). Note the different ranges on the ordinate axis. Lines are
predictions of the model in Eqs. (21)–(24). Crosses and squares are data from
numerical simulations at �m ¼ 0:065 and �m ¼ 0:39, respectively. In the bottom figure,
the model predicts two overlapping solutions.

5126 X. Chen, M. Louge / International Journal of Heat and Mass Transfer 51 (2008) 5119–5129
q < 0 is the heat flux crossing both thermal walls at vanishing c.
Combining this relation with Eq. (38), we find

qþ ¼ qþ c
L
2
: ð39Þ
The objective of our experiments is to measure the apparent con-
ductivity of the suspension

keff � �qL=ðTþ � T�Þ: ð40Þ

As Fig. 1 illustrates, our strategy identifies three principal paths for
the rate _Q of electrical heat supplied to the central heater of ex-
posed area Ah,

_Q ¼ �Ahqþ þ ðT
þ � T�Þ

Rb
þ hbSb

Tþ þ T�

2
� T1

� �
: ð41Þ

In this equation, the first term is the rate of heat transferred to the
suspension through the hot plate (path labeled 1 in Fig. 1). The sec-
ond term represents heat conduction through the ceramic walls of
overall thermal resistance Rb (path labeled 2). The third term
approximates convective losses from the box as a rate driven by
the difference between the intermediate wall temperature
(T+ + T�)/2 and the ambient T1, through a constant exchange area
Sb at a convection coefficient hb (path labeled 3). We rearrange
Eq. (41) to isolate the dependence of _Q on T�,

_Q ¼ �ðhbSbT1 þ c
AhL
2
Þ þ Tþ

1
Rb
þ hbSb

2
þ keff

Ah

L

� �
�XT�; ð42Þ

where X � keffAh/L � hbSb/2 + 1/Rb is the slope of the linear relation
between _Q and T�, which we record once a steady-state is achieved.
Crucially, this slope is independent of c and T1. Then, by adopting
the same protocol for cooling the box in all experiments, we ensure
that (hbSb/2 � 1/Rb) is a constant. To determine its magnitude, we
first run baseline tests with helium. To prevent the latter from
escaping the box or from penetrating its air-filled ceramic wall,
we coat the inside surface of the cavity with a thin plastic sealant.
We then record the slope XHe of _Q versus T�. Because these baseline
tests have a low Rayleigh number Ra ¼ 2gL3q2

gcgðTþ � T�Þ=
ðTþ þ T�Þkgl < 800, they are not affected by free convection [25],
and their effective conductivity is that of helium, kHe = 0.159 W/
m K. Then, for granular suspensions in air, we extract the flux ratio
using

�q
q0
¼ kHe

kair
þ ðX�XHeÞ

L
kairAh

� �
; ð43Þ

where kair = 0.0277 W/m K is the conductivity of air evaluated at a
typical temperature of our experiments.

The lumped-parameter data reduction strategy of Eq. (42) as-
sumes that the heat flow is mainly directed along y. We test this
assumption with two-dimensional finite-element ANSYS numeri-
cal simulations sketched in Fig. 5. In these, ceramic walls and cav-
ity have known conductivities; the heater is a thin rectangle at
constant temperature; the cooler and its fins are represented by
a thick isothermal rectangle; and convective heat exchanges occur
between the external surfaces and the ambient with heat transfer
coefficients appropriate to the kind of convection they experience.
We run the simulations with values of T+ and T� similar to those in
experiments and verify that, despite external losses, the electrical
energy supplied to the central heater plots as a straight line versus
T�, even in the worst case when the cavity is filled with stagnant
air, which has the lowest conductivity we can expect to test, and
would thus induce the strongest departure from one-dimensional
heat flow from heater to cooler.

Fig. 6 shows experimental data for evaluating the helium base-
line slope. Although the intercept of _Q versus T� can vary with
changes in ambient conditions, XHe is remarkably insensitive to
those changes. From this graph, we adopt XHe = 6.6 � 10�3 W/K.
Fig. 7 is typical raw data for 4 mm acrylic spheres vibrated in air.

Although the Rayleigh number of the helium-filled cavity was
too small to portend any free convection in baseline tests, we sus-
pected that experiments with air alone (Ra 	 48,000) could be
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Fig. 6. Power consumption of the central heater versus cooler temperature to
determine the helium baseline slope XHe. The three runs with different symbols
indicate different ambient conditions. Lines are least-squares fits to experimental
data.
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Fig. 7. Power consumption of the central heater versus cooler temperature for
acrylic spheres of 4 mm vibrated in air at, from bottom to top, a0 = 0.72, 1.27, 1.69,
and 1.96 mm with f = 50 Hz and �m ¼ 0:065. From the least-square fits and Eq. (43),
we calculate, respectively, �q=q0 ¼ 4:3;4:2;5:6; and 6:0 from the slopes of these
lines. We do not exploit their intercepts, which, according to Eq. (42), depend upon
c and T1 as well as keff.
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Fig. 8. Variations of �q=q0 with Ks/Kg and �m for acrylic spheres with L/d = Z/d = 12.7.
Ks/Kg is calculated from Eqs. (2) and (5) using �m and H�ns in Tables 3–6. From bottom
to top, squares, diamonds, circles, upward triangles, downward triangles and
crosses are data at �m ¼ 0:065, 0.13, 0.195, 0.26, 0.325, and 0.39, respectively. Dashed
lines are the corresponding predictions of the thermal theory in Eq. (1), assuming
uniform m and H in the box. Solid lines are predictions of Eq. (32) combining the
thermal theory of Eq. (1) with vertical profiles of m and H from the vibration model
of Section 2.2. Small kinks in the solid lines near Ks/Kg = 380, 240 and 145 for
�m ¼ 0:26, 0.325 and 0.39, respectively, are due to jumps from collapsed to agitated
solutions of the vibration model.

Fig. 5. A typical two-dimensional finite-element ANSYS numerical simulation of
heat flow through the box. The square internal cavity has a uniform kg = 0.13 W/
m K. The outside is air at 300 K. We estimate free convection coefficients he = 4 W/
m2 K from available correlations [25] for all external surfaces but the cooler’s shown
on the left. For the latter, we assume instead that forced convection extracts heat at
a coefficient hc1 = 20 W/m2 K from cooling fins represented as an isothermal
rectangle behind the TEM cooler. On the ceramic (left) surface above and below the
fins, we assume an intermediate hc2 = 8 W/m2 K.

X. Chen, M. Louge / International Journal of Heat and Mass Transfer 51 (2008) 5119–5129 5127
tainted by such effects. Using Eq. (43) to reduce data similar to
Fig. 6, we calculated an apparent conductivity for clean air as much
as 21% above kair without vibration, and as high as 70% with vibra-
tion. Although this increase is smaller than what is expected of free
convection in a cavity of this size and value of Ra [25], confinement
by the side walls of normal x likely frustrated the development of
free convection of air in the box, and further reassured us that free
convection should not affect helium baseline tests. Similarly, the
presence of rapidly moving grains should also make free convec-
tion irrelevant to agitated suspensions.

3. Results

Tables 3–6 lists all data and model predictions for the flux ratio
�q=q0 versus dimensionless acceleration C for acrylic and aluminum
spheres. They also include simulation measurements and model
predictions of mean dimensionless temperature H�, and the corre-
sponding values of Ks/Kg from Eqs. (2) and (5). In these tables, val-
ues of �q=q0 in boldface represent conditions for which the heat
generated by particle collisions is at least 10% of the nominal heat
transferred through the hot plate, i.e., cL/2 > 0.1jqj. Such conditions
are typically observed with relatively dense suspensions of large
spheres at high agitation.

As Figs. 8 and 9 illustrate, our thermal theory captures varia-
tions of �q=q0 with Ks/Kg, �m and L/d in the exchange limit. These fig-
ures also indicate that vertical variations of m and H can affect �q=q0

substantially at low agitation. Fig. 10 highlights the role of ns = ks/kg

and, to a lesser extent, of the Biot number, by comparing �q=q0 for
aluminum and acrylic spheres of the same diameter. Unfortu-
nately, because aluminum spheres dissipate agitation at a greater
rate, their suspensions are all partially collapsed near the bottom
(see for example Fig. 3, dashed lines), and predictions are more dif-
ficult. Curiously, the model suggests that, for aluminum, �q=q0 can
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Fig. 10. Variations of �q=q0 with Ks/Kg for acrylic (triangles) and aluminum spheres
(circles) for L/d = Z/d = 7.9 at �m ¼ 0:195 (filled symbols) and �m ¼ 0:065 (open
symbols). Lines represent theoretical predictions of Eq. (32) for aluminum (solid
lines) and acrylic spheres (dashed lines).
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increase as the suspension tends to small Ks/Kg. This is because the
collapsed region experiences greater volume fractions, which raise
Kg/kg considerably due to aluminum’s greater values of ns (see Eq.
(34)). A complicating issue is that aluminum spheres showed signs
of contamination from copper oxide acquired through multiple im-
pacts with thermal walls, thus changing their surface properties in
unpredictable ways. Overall, we do not trust our data for alumi-
num spheres as much as those for acrylic. Nonetheless, the alumi-
num data marks a transition from the agitated regime of interest to
the pure conduction through a static bed of grains, which Vargas
and McCarthy explored [3]. In their experiments, because the area
of contact between spheres dominates the effective conductivity of
the packing, it was crucial to control the applied stresses carefully,
a precaution which we could not reliably achieve in our setup.

4. Conclusions

In Part II, we described experiments testing our theoretical pre-
dictions for the enhancement of heat flux through thermal walls of
vessels containing a gas and agitated spheres in the ‘‘exchange lim-
it”. Agitation was conferred on the particles in a rectangular box
vibrated in the vertical direction. A two-dimensional temperature
field was established by surrounding the central measurement
heater with a thermal guard, by cooling the opposite wall with
thermoelectric modules, and by maintaining both hot and cold
thermal walls at distinct steady temperatures. We developed a
protocol to infer heat flux from the slope of a graph plotting power
supplied to the central heater versus temperature of the cold wall.
The protocol kept our results independent of conduction through
the ceramic walls of the box, of convection losses from the box,
and of heat generated by inelastic granular collisions. However,
gravity compelled us to calculate vertical profiles of granular tem-
perature and volume fraction before interpreting the data.

We carried out tests with acrylic and aluminum spheres. Be-
cause acrylic spheres had nearly elastic collisions, they yielded
more reliable data, and confirmed predictions of the thermal model
for variations of heat flux with agitation, solid volume fraction and
particle size. On the other hand, because suspensions of relatively
inelastic aluminum spheres were more likely to collapse and to de-
velop collision-induced surface contamination, their data were less
reliable. Overall, our experiments showed the merits of the thermal
model described in Part I, but left open to further research experi-
mental comparisons in the ‘‘diffusion limit.” To access the latter
with macroscopic grains, it is necessary to operate in long-term
microgravity, so that a thermal steady-state may be established
without collapsing the gas–solid suspension. Colloidal suspensions
also reside in the diffusion limit. We will discuss them in Part III.
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